

2025 Consumer Confidence Report (CCR) Annual Water Quality Report

FREEDOM POND NEW IPSWICH, NH PWS #1713010

We are pleased to present to you our Annual Drinking Water Quality Report, also known as the Consumer Confidence Report. This report, a requirement of the 1996 amendments to the Safe Drinking Water Act, is designed to inform you about the quality water and services we deliver to you every day. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water.

Water Source

Freedom Pond obtains its water from two alternating gravel packed wells. Well 3 located approximately three feet northeast of the pump house is 55 feet deep and yields 150 gallons per minute (gpm) in 1986. Well 4 located approximately 40 feet west of the pump house is 35 feet deep and yields 20 gpm in 2008. Treatment consists of a sediment filter, soda ash for corrosion control, and an ion exchange unit for reducing iron and manganese. The system serves approximately 112 people through 50 connections and uses around 6000 gallons per day.

White Water, Inc. provides Freedom Pond with contract operation services. The contract operation includes the services of a state certified operator who monitors the water system for compliance with all state and federal drinking water regulations. The operating contract also includes services such as making emergency repairs when needed, making recommendations for improving water quality and increasing system reliability.

We currently do not have any regularly scheduled meetings, however, if you have any questions about this report or concerning your water system, please contact WhiteWater, Inc. at (888) 377-7678. We want our valued customers to be informed about their water system.

Source Water Assessment

A water assessment of Freedom Pond was completed by the New Hampshire Department of Environmental Services (NHDES). The updated assessment report can be found on the NHDES website at: https://www.des.nh.gov/climate-and-sustainability/conservation-mitigation-and-restoration/source-water-protection/assessment. The assessment found that this public drinking water source has a high susceptibility to potential sources of contamination in 2 criteria and medium susceptibility in 1 other criteria.

Additional source water assessment information can be found at the Environmental Protection Agency's website: <u>https://www.epa.gov/sourcewaterprotection/source-water-assessments</u>.

Source Water Protection

Source water is untreated water from streams, rivers, lakes, or underground aquifers that is used to supply public drinking water. Preventing drinking water contamination at the source makes good public health, economic, and environmental sense. You can be aware of the challenges of keeping drinking water safe and take an active role in protecting drinking water. There are lots of ways that you can get involved in drinking water protection activities to prevent the contamination of the ground water source: dispose properly of household chemicals, help clean up the watershed that is the source of your community's water, attend public meetings to ensure that the community's need for safe drinking water is considered in making decisions about land use, etc. Contact our office for more information on source water protection or contact the Environmental Protection Agency (EPA) at 1.800.426.4791. You may also find information on EPA's website at https://www.epa.gov/sourcewaterprotection.

Water Quality

Freedom Pond routinely monitors for contaminants in your drinking water according to Federal and State laws. The following table shows any detection resulting from our monitoring for the period of January 1 to December 31, 2024. It is important to remember that the presence of these contaminants does not necessarily pose a health risk.

The sources of drinking water include rivers, lakes, ponds, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and radioactive material and can pick up substances resulting from human or animal activity. All sources of drinking water are subject to potential contamination by substances that are naturally occurring, or manmade. Contaminants that may be present in source water include:

- **Microbial contaminants**, such as viruses and bacteria, may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- **Inorganic contaminants**, such as salts and metals, can be naturally occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- **Pesticides and herbicides** may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.
- **Organic chemical contaminants**, including synthetic and volatile organic chemicals, are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.
- **Radioactive contaminants** can be naturally occurring or be the result of oil and gas production and mining activities.

To ensure that tap water is safe to drink, U.S. Environmental Protection Agency (EPA) prescribes regulations which limit the number of certain contaminants in water provided by public water systems. U.S. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

The table below lists all the drinking water contaminants that were detected throughout water quality monitoring and testing. The presence of contaminants in the water does not necessarily indicate that the water poses a health risk.

			Test Result	<u>s</u>		
liniess otherwis	a noted the		wise noted, testing w			ollected has been reported.
Contaminant	Violation (Y/N)	Level Detected	Unit Measurement	MCLG	MCL	Likely Source of Contamination
		Micro	obiological Conta	aminants	5	
Total Coliform Bacteria	Y	11	highest number of positive samples (monthly)	Absent	0 positive	Naturally present in the environment.
Fecal Coliform – E.Coli	Ν	0	highest number of positive samples (monthly)	Absent	0 positive	Human and animal fecal waste.
for potential proble	ems in the w	ater treatment f these assess		en this oco v in this re	curs, we ar	indicating the need to look re required to conduct an
		10	lorganic Contami	nants		Discharge frame astrolours
Arsenic (Quarterly 2024)	Ν	ND	mg/L	0	5	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder.
Nitrite (1/9/2024)	Ν	ND	mg/L	1	1	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits.
Nitrate (1/9/24, 8/27/24)	Ν	0.63-0.84	mg/L	10	10	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits.
Sodium (1/9/2024)	Ν	98.6	mg/L	N/A	100- 250	Erosion of natural deposits, urban storm runoff.
Sulfate (1/9/2024)	Ν	11	mg/L	N/A	250	Erosion of natural deposits; urban storm runoff.

	1		track the follo	owing four.	•	
Contaminant	Violati on (Y/N)	Level Detected	Unit Measure ment	MCLG	MCL	Likely Source of Contamination
PFHxS – Perfuorohexane Sulfonic Acid	N	2.88	ppt	-	18	Discharges and emissions from industrial and manufacturing sources associated with the production or use of these PFAS,
PFNA – Perfluorononanoic Acid	N	0.736	ppt	-	11	 production of use of these PFAS, including production of moisture and oil-resistant coatings on fabrics and other materials. Additional sources include the use and disposal of products containing these PFAS, such as
PFOS – Perfluorooctane Sulfonic Acid	N	6.71	ppt	-	15	
PFOA – Perfluorooctanoic Acid	N	8.35	ppt	-	12	fire-fighting foams. corrosion of household plumbing systems.

Lead & Copper 7/5/2023 (next testing due in 2026)						
Contaminant	Violation (Y/N)	Level Detected	Unit Measurement	MCLG	AL	Likely Source of Contamination
Lead – 90 th Percentile	Ν	3	ppb	0	15	Corrosion of household plumbing systems.
Copper – 90 th Percentile	Ν	0.682	mg/L	1.3	1.3	Corrosion of household plumbing systems.
Number of lead Number of sites Number of cop Number of sites	s exceeding I per samples	ead action leve collected: 5		11		

*Note: the state allows us to monitor for some contaminants less than once a year because the concentrations of these contaminants do not change frequently. Not all contaminants are tested for every year due to monitoring waivers and therefore we use the most recent round of sampling. Some of the data presented is more than one year old, however, is limited to no older than five years.

		Assessments				
Assessment Type	Date					
	Completed					
Level 1 Assessment	8/16/2024					
Level 1 Assessment Find	Level 1 Assessment Findings: The routine bacteria sample collected on August 6, 2024 detected the					
presence of total coliform	presence of total coliform bacteria. Repeat samples collected on August 8, 2024 confirmed the					
-		I sites in the distribution system.				
		n bacteria. Additional treatment e	-			
August 16, 2024 confirme	ed the absenc	e of total coliform bacteria at all s	sites in the distribution system			
and both wells.						
Level 2 Assessment	9/13/2024					
Level 2 Assessment Findings: The routine bacteria sample collected on September 10, 2024 detected						
•	the presence of total coliform bacteria in all distribution sites. The source wells were hand chlorinated					
-		these detections the NHDES has	imposed monthly bacteria			
sampling requirements for						
Level 2 Assessment	10/14/2024					
Level 2 Assessment Findings: The routine bacteria sample collected on October 8, 2024 detected the						
presence of total coliform bacteria in the routine sample site. Repeat samples collected on October 10,						
2024 detected the presence of total coliform bacteria in all distribution sites and the distribution entry						
point. The source wells were absent from bacteria at that time. Source Well 1 was hand chlorinated on						
October 16, 2024. Source Well 2 was not hand chlorinated as it was out of service. The system is						
		n system flushing through a third				
		mpling. Samples taken in Noven	nder and December 2024 were			
absent for total coliforms.	•					

Units of Measurement:

Parts per million (ppm) or	A measurement that corresponds to one minute in two years, or a
Milligrams per liter (mg/L)	single penny in \$10,000.
Parts per billion (ppb) or	A measurement that corresponds to one minute in 2,000 years, or a
Micrograms per liter (µg/L)	single penny in \$10,000,000.
Picocuries per liter (pCi/L) or	Measurements of radioactivity in water.
Micrograms per liter (µg/L)	
Millirems per year	A measurement of radiation absorbed by the water.
(mrem/year)	
Nephelometric Turbidity Unit	A measurement of the clarify of water; turbidity more than 5 NTU is
(NTU)	just noticeable to the average person.
Million fibers per liter (MFL)	A measurement of the presence of asbestos fibers that are longer than
	10 micrometers.

Definitions:

Action Level (AL)	the concentration of contaminant which, if exceeded, triggers
	treatment or other requirements which a water system must follow.

Treatment Technique (TT)	a required process intended to reduce the level of a contaminant in
	drinking water.
Maximum Contaminant Level	the highest level of a contaminant that is allowed in drinking water;
(MCL)	MCLs are set as close to the MCLGs as feasible using the best
	available treatment technology.
Maximum Contaminant Level	the level of a contaminant in drinking water below which there is no
Goal (MCLG)	known or expected risk to health; MCLGs allow for a margin of safety.
Drinking Water Equivalent	a lifetime exposure concentration protective of adverse, non-cancer
Level (DWEL)	health effects, that assumes all the exposure to a contaminant is from
	a drinking water source.
Maximum Residual	the highest level of a disinfectant allowed in drinking water; there is
Disinfectant Level (MRDL)	convincing evidence that addition of disinfectant is necessary for
	control of microbial contaminants.
Maximum Residual	the level of drinking water disinfectant below which there is no known
Disinfectant Level Goal	or expected risk to health; MRDLGs to do reflect the benefits of the
(MRDLG)	use of disinfectants to control microbial contaminants.
Running Annual Average	the average of all monthly or quarterly samples for the last year at all
(RAA)	sample locations.
Non-Detect (ND)	the specified contaminant was not detected.
Level 1 Assessment	a study of the water system to identify potential problems and
	determine (if possible) why total coliform bacteria has been found in
	the water system.
Level 2 Assessment	a very detailed study of the water system to identify potential problems
	and determine (if possible) why an E. Coli MCL violation has occurred
	and/or why total coliform bacteria has been found in the water system
	on multiple occasions.

IMPORTANT INFORMATION

Lead & Copper:	Samples are generally collected, and action levels measured at the consumer's tap. 90% of the tests for a given system must be equal to or below the action level; therefore, a section of the results above has been calculated and are listed as the 90 th percentile.
Lead:	Major sources in drinking water: corrosion of household plumbing systems; erosion of natural deposits.
	Health effects statement: Infants and children who drink water containing lead more than the action level could experience delays in their physical or mental development. Children could show slight deficits in attention span and learning abilities. Adults who drink water containing lead more than the action level over many years could develop kidney problems or high blood pressure.
Copper:	Major sources in drinking water: corrosion of household plumbing systems; erosion of natural deposits.
	Health effects statement: Copper is an essential nutrient, but some people who drink water containing copper in excess of the action level over a relatively short amount of time could experience gastrointestinal distress. Some people who drink water containing copper more than the action level over many years could,

	suffer liver or kidney damage. People with Wilson's Disease should consult their doctor.
Arsenic:	The United States Environmental Protection Agency (US EPA) adopted the new MCL standard of 10ppb in October 2001. Water systems were required to meet
	this new standard by January 1 2006.
Total Coliform:	Reported as the highest monthly number of positive samples for water systems that take less than 40 samples per month. Coliforms are bacteria which are naturally present in the environment and are used as an indicator that other, potentially harmful bacteria, may be present.
Turbidity:	Turbidity has no health effects, however, can interfere with disinfection and provide a medium for microbial growth. Turbidity may indicate the presence of disease-causing organisms, that can include bacteria, viruses, and parasites that can cause symptoms such as nausea, cramps, diarrhea, and associated headaches.

14 41

. . .

All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1 (800) 426-4791.

For most people, the health benefits of drinking plenty of water outweigh any possible health risk from these contaminants. However, some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Center of Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline at 1 (800) 426-4791.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for thirty (30) seconds to two (2) minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

We, at Freedom Pond work hard to provide top quality water to every tap. Water is a limited resource, so it is vital that we all work together to maintain it and use it wisely. We ask that all our customers help us protect and preserve our drinking water resources, which are the heart of our community, our way of life, and our children's future. Please contact us with any questions. Thank you for working together for safe drinking water.